A Short Survey on Biharmonic Maps between Riemannian Manifolds
نویسنده
چکیده
and the corresponding Euler-Lagrange equation is H = 0, where H is the mean curvature vector field. If φ : (M, g) → (N, h) is a Riemannian immersion, then it is a critical point of the bienergy in C∞(M,N) if and only if it is a minimal immersion [26]. Thus, in order to study minimal immersions one can look at harmonic Riemannian immersions. A natural generalization of harmonic maps and minimal immersions can be given by considering the functionals obtained integrating the square of the norm of the tension field or of the mean curvature vector field, respectively. More precisely: • biharmonic maps are the critical points of the bienergy functional E2 : C∞(M,N) → R, E2(φ) = 12 ∫
منابع مشابه
Stability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملBiharmonic Hypersurfaces in Riemannian Manifolds
We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...
متن کاملBiharmonic Maps between Doubly Warped Product Manifolds
In this paper biharmonic maps between doubly warped product manifolds are studied. We show that the inclusion maps of Riemannian manifolds B and F into the doubly warped product f B ×b F can not be proper biharmonic maps. Also we analyze the conditions for the biharmonicity of projections f B ×b F → B and f B ×b F → F , respectively. Some characterizations for non-harmonic biharmonic maps are g...
متن کاملEnergy identity of approximate biharmonic maps to Riemannian manifolds and its application
We consider in dimension four weakly convergent sequences of approximate biharmonic maps to a Riemannian manifold with bi-tension fields bounded in L for p > 4 3 . We prove an energy identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely many nontrivial biharmonic maps on R. As a corollary, we obtain an energy identity for the heat flow of biharmoni...
متن کامل